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Summary. We consider problems in which there is a separation between the (mi-
croscopic) scale at which the available model is defined, and the (macroscopic) scale
of interest. For time-dependent multi-scale problems of this type, an “equation-free”
framework has been proposed, of which patch dynamics is an essential component.
Patch dynamics is designed to perform numerical simulations of an unavailable
macroscopic equation on macroscopic time and length scales; it only uses appro-
priately initialized simulations of the available microscopic model in a number of
small boxes (patches), which cover a fraction of the space-time domain. We review
some recent convergence results and demonstrate that the method allows to simulate
advection-dominated problems accurately.

1 Introduction

In many problems of current interest, one is interested in the behaviour of
a (physical, chemical) system on macroscopic length and time scales, while
the only valid model is available at a more microscopic scale. For example,
in polymer flow, it is often impossible to find a closed formula for the stress
tensor in terms of the velocity field. Therefore, the macroscopic model (a
partial differential equation, PDE) needs to be supplemented with a Monte
Carlo simulation to estimate the stress tensor [19, 20, 28]. Similar problems
arise in flow through porous media, where it is often hard to obtain an effective
permeability coefficient analytically [2], or bacterial chemotaxis, where a PDE
for the density can only be derived from an individual-based model under
simplifying assumptions which cannot always be fully justified [10].

In this work, we consider situations where only a microscopic model is
known,

∂tu(x, t) = f(u(x, t)), (1)

in which u(x, t) represents the microscopic state variables, x ∈ Dm are the
remaining microscopic independent variables, and ∂t denotes the time deriva-
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tive. We assume that an equivalent macroscopic model exists, but cannot be
obtained in closed form. We denote this model by

∂tU(X, t) = F (U(X, t)), (2)

in which U(X, t) represents the macroscopic state variables, and X ∈ DM

and t are the macroscopic independent variables. If one is only interested in
the macroscopic solution U(X, t), one can construct a so-called coarse-grained
time-stepper as proposed by Kevrekidis et al [21, 36]. We introduce a time-
stepper for the microscopic evolution law (1),

u(x, t+ dt) = s(u(x, t); dt), (3)

where dt is the size of the (microscopic) time-step, and the aim is to obtain a
coarse-grained time-stepper for the variables U(X, t) as

U(X, t+ δt) = S̄(U(X, t); δt), (4)

where δt denotes the size of the (coarse-grained) time-step, and the bar has
been introduced to emphasize the fact that the time-stepper for the macro-
scopic variables is only an approximation of a time-stepper for (2), since this
equation is not explicitly known.

To define a coarse-grained time-stepper (4), we need to introduce two oper-
ators that make the transition between microscopic and macroscopic variables.
We define a lifting operator,

µ : U(X, t) 7→ u(x, t) = µ(U(X, t)), (5)

which maps macroscopic to microscopic variables, and its complement, the
restriction operator

M : u(x, t) 7→ U(X, t) =M(u(x, t)). (6)

The restriction operator can often be determined as soon as the macroscopic
variables are known. For instance, when the microscopic model consists of an
evolving ensemble of many particles, the restriction typically consists of the
computation of the low-order moments of the distribution (density, momen-
tum, energy), which are considered as the macroscopic variables U(X, t). The
assumption that a macroscopic equation exists for these low-order moments,
implies that the higher-order moments become functionals of the low-order
moments on time-scales which are fast compared to the overall system evolu-
tion (slaving).

The construction of the lifting operator is usually more involved. Again
taking the example of a particle model, we need to define a mapping from
a few low-order moments to an initial condition for each of the particles.
We know that the higher-order moments of the resulting particle distribution
should be functionals of the low-order moments, but unfortunately, these func-
tionals are unknown (since the macroscopic evolution law is also unknown).
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Several approaches have been suggested to address this problem. One could
for instance initialize the higher-order moments randomly. This introduces
a lifting error, and one then relies on the separation of time-scales to ensure
that these higher-order moments relax quickly to a functional of the low-order
moments (healing) [13, 25, 35]. We note that, in some cases, this approach can
be shown to produce inaccurate results [22]. In fact, to initialize the higher-
order moments correctly, one should perform a simulation of the microscopic
system, with the additional constraint that the low-order moments should be
kept fixed. How this can be done using only a time-stepper for the original
microscopic system, is explained and analyzed in [11, 12, 23].

Given an initial condition for the macroscopic variables U(X, t∗) at some
time t∗, we can then construct the time-stepper (4) in the following way:

1. Lifting. Using the lifting operator (5), create appropriate initial condi-
tions u(x, t∗) for the microscopic time-stepper (3), consistent with the
macroscopic variables.

2. Simulation. Use the time-stepper (3) to compute the microscopic state
u(x, t) for t ∈ [t∗, t∗ + δt].

3. Restriction. Obtain the macroscopic state U(X, t∗+ δt) from the micro-
scopic state u(x, t∗ + δt) using the restriction operator (6).

Assuming δt = kdt, this can be written as

U(X, t+ δt) = S̄(U(X, t), δt) =M(sk(µ(U(X, t)),dt)), (7)

where we have represented the k microscopic time-steps by a superscript on
s. If the microscopic model is stochastic, one may need to perform multiple
replica simulations to get an accurate result.

Here, we consider situations where the macroscopic model (2) is assumed
to be a partial differential equation in one space dimension, so X = x. For this
type of problems, the patch dynamics scheme was proposed [21, 32, 33], which
only performs appropriately initialized microscopic simulations in a small frac-
tion of the space-time domain to reduce the computational cost. The general
idea is the following. First, we construct a coarse time-stepper which only
performs simulations of the microscopic model in a number of small boxes,
which can be thought of as macroscopic mesh points. We initialize a micro-
scopic simulation at time t∗ in each of the boxes (lifting); run the time-stepper
(3) until t = t∗ + δt and compute the macroscopic variables in each of the
boxes at time t∗ + δt (restriction). The resulting coarse-grained time-stepper
is called the gap-tooth scheme [21, 33]. Because the microscopic time-stepper
(3) takes very small time-steps of size dt, the coarse-grained time-step δt may
still be very small compared to the slow time-scales of the macroscopic model
(2). Therefore, we use the gap-tooth time-stepper to estimate the macroscopic
time derivative and use this estimate to take a time-step of size ∆t� δt.

The performance and accuracy of the patch dynamics scheme are currently
under active investigation. Recently, we have studied the convergence prop-
erties patch dynamics scheme for a model diffusion homogenization problem.
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We showed that the patch dynamics scheme approximates a finite difference
scheme for the effective (homogenized) equation, using only the microscopic
(homogenization) equation in a set of small boxes [31, 32, 33]. A major issue
is the imposition of appropriate box boundary conditions. For example, when
the macroscopic behaviour is governed by diffusion, we can impose the aver-
age gradient as a boundary condition [33], or we can take arbitrary boundary
conditions, provided we surround the computational boxes by buffer boxes
to reduce the artefacts [32]. This latter technique is especially suited when a
(e.g. particle) code is given, with built-in boundary conditions which are im-
possible, or very difficult, to change. Roberts et al. are investigating boundary
conditions that lead to higher order accurate schemes [29].

In this paper, we confine ourselves to homogenization problems for the
purpose of convergence analysis. In this case, the microscopic model is a par-
tial differential equation with coefficients that vary on a small spatial scale,
while the macroscopic model is a partial differential equation for the effective
behaviour on large spatial scales. However, we emphasize that the method
can also be applied with, and is in fact designed for, the effective behaviour of
truly microscopic models, such as kinetic Monte Carlo methods, or molecular
dynamics.

We note that many numerical schemes have been devised for the homog-
enization problem. The earliest work dates back to Babuska [3] for elliptic
problems and Engquist [8] for dynamic problems. Without the aim of being
complete, we mention some recent multi-scale approaches to the homogeniza-
tion problem. The multi-scale finite element method of Hou and Wu uses
special basis functions to capture the correct microscopic behaviour [16, 17].
Schwab, Matache and Babuska have devised a generalized FEM method based
on a two-scale finite element space [26, 34]. Other approaches include the use
of wavelet projections [6, 9] and multi-grid cycles [27]. Runborg et al. [30]
proposed a time-stepper based method that obtains the effective behaviour
through short bursts of detailed simulations appropriately averaged over many
shifted initial conditions. The simulations were performed over the whole do-
main, but the notion of effective behaviour is identical. In their recent work,
E and Engquist and collaborators address the same problem of simulating
only the macroscopic behaviour of a multiscale model, see e.g. [1, 7]. In their
method, which is very similar in spirit, an unavailable macroscopic flux is esti-
mated from appropriately initialized and constrained microscopic simulations,
and used inside a macroscopic finite volume scheme.

The paper is organized as follows. In section 2 we discuss some model
homogenization problems. Section 3 explains the patch dynamics scheme. We
briefly review some theoretical convergence results in section 4. In section 5, we
show that we can also approximate the macroscopic behaviour of hyperbolic
homogenization problems. This is possible because we can approximate any
desired finite difference scheme by an appropriate choice of the lifting step (the
initialization of the small boxes). We note that the theoretical convergence
analysis has not explicitly been done for this case. We conclude in section 6.
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2 Model problems

2.1 Parabolic homogenization problem

As a microscopic problem, we consider a parabolic partial differential equation,

∂tuε(x, t) = ∂x (a (x/ε) ∂xuε(x, t)) ,

uε(x, 0) = u0(x) ∈ L2([0, 1]),
uε(0, t) = uε(1, t) = 0,

(8)

where a(y) = a (x/ε) is uniformly elliptic and periodic in y and ε is a small
parameter. We choose homogeneous Dirichlet boundary conditions for sim-
plicity.

On the macroscopic scale, we are interested in an effective, homogenized
partial differential equation, in which the small-scale parameter ε has been
eliminated. According to classical homogenization theory [4], the solution of
(8) can be written as an asymptotic expansion in ε,

uε(x, t) = U(x, t) +
∞∑
i=1

εi (ui(x, x/ε, t)) , (9)

where the functions ui(x, y, t) ≡ ui(x, x/ε, t), i = 1, 2, . . . are periodic in y.
Here, U(x, t) is the solution of the homogenized equation

∂tU(x, t) = ∂x (a∗∂xU(x, t))

U(x, 0) = u0(x) ∈ L2([0, 1]),
U(0, t) = U(1, t) = 0.

(10)

Here, a∗ is the constant effective coefficient, given by

a∗ =
∫ 1

0

a(y)
(

1− d
dy
χ(y)

)
dy, (11)

and χ(y) is the periodic solution of

d
dy

(
a(y)

d
dy
χ(y)

)
=

d
dy
a(y), (12)

the so-called cell problem. The solution of (12) is only defined up to an additive
constant, so we impose the extra condition∫ 1

0

χ(y)dy = 0.

We note that in one space dimension, an explicit formula is known for a∗ [4],



6 Giovanni Samaey, Dirk Roose, and Ioannis G. Kevrekidis

a∗ =
[∫ 1

0

1
a(y)

dy
]−1

. (13)

These asymptotic expansions have been rigorously justified in the classical
book [4], see also [5]. Under the smoothness assumptions made on a(x/ε), one
obtains strong convergence of uε(x, t) to U(x, t) as ε → 0 in L2([0, 1]) ×
C([0, T )). Indeed, we can write

‖uε(x, t)− U(x, t)‖L2([0,1])
≤ C0ε, (14)

uniformly in t.

2.2 Hyperbolic homogenization problem

We consider the following hyperbolic partial differential equation in one space
dimension,

∂tuε(x, t) + ∂x [c (x/ε)uε(x, t)] = 0,

uε(x, 0) = u0(x) ∈ L2([0, 1]), ∂xuε(0, t) = 0,
(15)

where c(y) = c (x/ε) > 0 is periodic in y and ε is a small parameter. We
choose a homogeneous Neumann boundary condition for simplicity.

As in the previous section, we are interested in an effective, homogenized
partial differential equation on a macroscopic scale, where the dependence on
the small scale parameter has been eliminated. According to classical homog-
enization theory [4, 5], the solution of (15) converges weakly in the limit of
ε→ 0 to the solution of

∂tU(x, t) + ∂x [c∗U(x, t)] = 0,

U(x, 0) = u0(x) ∈ L2([0, 1]), ∂xU(0, t) = 0,
(16)

which describes the evolution of the averaged, effective behaviour. As in the
parabolic case, the effective coefficient c∗ is given by the harmonic average,

c∗ =
[∫ 1

0

1
c(y)

dy
]−1

. (17)

3 Patch dynamics

We devise a scheme for the evolution of the effective behaviour U(x, t) of a
general homogenization problem,

∂tuε = f(uε, ∂xuε, . . . , ∂dxuε, t; ε). (18)

We assume that a time integration code for this equation has already been
written and is available with a number of standard boundary conditions, such
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as no-flux or Dirichlet. Further, we assume that the macroscopic equation is
of the form

∂tU = F (U, ∂xU, . . . , ∂dxU, t), (19)

in which the order of the equation (the highest spatial derivative) d is assumed
to be known. For a strategy to obtain such information, see [24].

Suppose we want to obtain the solution of (19) on the interval [0, 1], using
an equidistant, macroscopic mesh Π(∆x) := {0 = x0 < x1 = x0 + ∆x <
. . . < xN = 1}. Given equation (19), we can define a method-of-lines space
discretization,

∂tUi(t) = F (Ui(t), D1(Ui(t)), . . . , Dd(Ui(t)), t), i = 0, . . . , N. (20)

where Ui(t) ≈ U(xi, t) and Dk(Ui(t)) denotes a suitable finite difference ap-
proximation for the k-th spatial derivative. We subsequently discretize equa-
tion (20) in time using a time integration method of choice, e.g. forward Euler.
We denote the resulting time-stepper as

Un+1 = S(Un, tn;∆t) = Un +∆t F (Un, tn), (21)

where Un = (U0(tn), . . . , UN (tn))T and ∆t denotes the macroscopic time-step.
We have suppressed the dependence of F (Un, tn) on the spatial derivatives for
notational convenience. Note that, although we have used the forward Euler
scheme here for concreteness, in principle any time discretization method can
be used to solve equation (20).

Since equation (19) is assumed not to be known explicitly, we will use
(21) for analysis purposes only. We construct a (patch dynamics) scheme
to approximate (21). To this end, we consider a small interval (box, tooth)
of size h � ∆x around each mesh point, and define the discrete solution
Ū(t) = (Ū0(t), . . . , ŪN (t))T ∈ RN+1 as being the average of the microscopic
solution in the small boxes,

Ūi(t) = Sh(uε)(xi, t) = (1/h)
∫ xi+h/2

xi−h/2
uε(ξ, t)dξ, i = 0, . . . , N. (22)

We denote an approximation of Ū(t) at t = tn as Ūn.
The patch dynamics scheme is now constructed as follows. We introduce a

larger buffer box of size H > h around each mesh point (see figure 1.) In each
box of size H, we perform a time integration over a time interval of size δt
using the microscopic model (18), and restrict to macroscopic variables. The
results are used to estimate the macroscopic time derivative. We provide each
microscopic simulation with the following initial and boundary conditions.

Initial condition. We define the initial condition by constructing a local
Taylor expansion, based on the (given) box averages Ūni , i = 0, . . . , N , at
mesh point xi and time tn,

ūiε(x, tn) =
d∑
k=0

Dk
i (Ūn)

(x− xi)k
k!

, x ∈ [xi − H

2
, xi +

H

2
], (23)
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H

Fig. 1: A schematic representation of the gap-tooth scheme with buffer boxes. We
choose a number of boxes of size h around each macroscopic mesh point xi and
define a local Taylor approximation as initial condition in each box. Simulation is
performed inside the larger (buffer) boxes of size H, where some boundary conditions
are imposed.

where d is the order of the macroscopic equation (19). The coefficientsDk
i (Ūn),

k > 0 are the same finite difference approximations for the k-th spatial deriva-
tive that would be used in the comparison scheme (20), whereas D0

i (Ū
n) is

chosen such that
1
h

∫ xi+h/2

xi−h/2
ūiε(ξ, tn)dξ = Ūni . (24)

Boundary conditions. The time integration of the microscopic model in
each box should provide information on the evolution of the global problem at
that location in space. It is therefore crucial that the boundary conditions are
chosen such that the solution inside each box evolves as if it were embedded in
the larger domain. To this end, we introduce a larger box of size H > h around
each macroscopic mesh point. The simulation can subsequently be performed
using any of the built-in boundary conditions of the microscopic code. Lifting
and (short-term) evolution (using arbitrary available boundary conditions)
are performed in the larger box; yet the restriction is done by processing the
solution (here taking its average) over the inner, small box only. The goal of
the additional computational domains, the buffers, is to buffer the solution
inside the small box from the artificial disturbance caused by the (repeatedly
updated) boundary conditions. This can be accomplished over short enough
time intervals, provided the buffers are large enough; analyzing the method is
tantamount to making these statements quantitative.
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The algorithm. The complete algorithm to obtain an estimate of the
macroscopic time derivative at time tn is given below:

1. Lifting. At time tn, construct the initial condition ūiε(x, tn), i = 0, . . . , N
using the box averages Ūni , as defined in (23).

2. Simulation. Compute the box solution ūiε(x, t), t > tn, by solving equa-
tion (18) in the interval [xi −H/2, xi +H/2] with some boundary condi-
tions up to time tn+δ = tn+δt. The boundary conditions can be anything
that the microscopic code allows.

3. Restriction. Compute the average Ūn+δ
i = 1/h

∫ xi+h/2

xi−h/2 ū
i
ε(ξ, tn+δ)dξ

over the inner, small box only.
4. Estimation. We estimate the time derivative at time tn as

F̄ d(Ūn, tn;h, δt,H) =
Ūn+δ − Ūn

δt
, (25)

where we have added a superscript d to denote the highest spatial deriva-
tive that has been initialized in the lifting step. We also made explicit the
dependence of the estimate on H and δt.

Since the first three steps constitute a gap-tooth time-step, we call the
estimator (25) a gap-tooth time derivative estimator. It can be used in any
ODE time integration code. For example, a forward Euler patch dynamics
scheme would be

Ūn+1 = Ūn +∆t F̄ d(Ūn, tn;h, δt,H). (26)

For more details, including a discussion of the additional issues that need
to be addressed for truly microscopic models, we refer to [32]. We emphasize
that an initialization according to equation (23) has the important advantage
that one can choose a suitable finite difference approximation for each deriva-
tive independently, as opposed to the method described in [21, 33], which
automatically leads to central finite differences. This property is crucial, and
will allow us to approximate advection-dominated equations more effectively.

4 Convergence results

In this section, we briefly review some theoretical convergence results that
were obtained for the parabolic homogenization problem (8), see [32] for de-
tails. In this case, we know that the order of the macroscopic equation d = 2.

4.1 Consistency analysis

For the effective equation (10), one can write a finite-difference/forward Euler
time-stepper as follows,
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Un+δ = S(Un, tn; δt)
= Un + δt F (Un, D1(Un), D2(Un), tn)
= Un + δt

[
a∗ D2(Un)

]
. (27)

.
We compare the gap-tooth time-derivative estimator with the effective

time derivative. For concreteness, we impose Dirichlet boundary conditions
at the boundaries of the boxes, which will clearly introduce artefacts on the
estimated time derivative. The subsequent theorem shows that these artefacts
can be made arbitrarily small by increasing the buffer size H [32].

Theorem 1 (Consistency) Let F̄ 2(Ūn, tn;h, δt, H) be a gap-tooth time-
stepper for the homogenization problem (8). Then, assuming Un = Ūn, we
have,∥∥F̄ 2(Ūn, tn; δt,H)− a∗D2(Un)

∥∥ ≤
C4

ε√
hδt︸ ︷︷ ︸

micro-scales

+ C5

(
1 +

h2

δt

)
︸ ︷︷ ︸
averaging

(
1− exp(−a∗π2 δt

H2
)
)

︸ ︷︷ ︸
boundary conditions

(28)

Formula (28) shows the main consistency properties of the gap-tooth estima-
tor. The error decays exponentially as a function of buffer size, but the optimal
accuracy of the estimator is limited by the presence of the microscopic scales.
Therefore, we need to make a trade-off to determine an optimal choice for H
and δt. The smaller δt, the smaller H can be used to reach optimal accuracy
(and thus the smaller the computational cost), but smaller δt implies a larger
optimal error.

It is shown numerically in [32] that the convergence result does not de-
pend crucially on the type of boundary conditions. E.g. for no-flux boundary
conditions, we obtain qualitatively the same result. However, if we know how
the macroscopic solution behaves at the boundaries of the boxes, we can use
this knowledge to eliminate the buffers. For the diffusion problem, we have
shown that we do not need buffer regions if we constrain the macroscopic
gradient at the boundaries [33]. However, in general it is very difficult to find
and implement such constraints for a given microscopic simulator.

4.2 Stability

Theorem 1 establishes the consistency of the gap-tooth scheme. To obtain con-
vergence, we also need stability. In [7], E and Engquist state that the hetero-
geneous multiscale method is stable if the corresponding comparison scheme
is stable, see [7, Theorem 5.5]. This theorem would also apply to our case.
However, due to the a priori assumption that the numerical approximation
remains bounded, it may be of little practical value. Here, we circumvent some
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of these difficulties by studying the stability properties of the scheme numer-
ically. This can be done by computing the eigenvalues of the time derivative
estimator as a function of H.

Consider the homogenization diffusion equation (8) with the diffusion co-
efficient a(x/ε) = 1.1+sin(2πx/ε). The homogenized equation is given by (10)
with a∗ = 0.45825686.

We define the concrete patch dynamics scheme to be a forward Euler
scheme,

Ūn+1 = Un +∆t F̄ 2(Ūn, tn; δt,H), (29)

with the box initialization defined by (23) with second order central finite dif-
ferences. In this case, the comparison finite difference scheme for the macro-
scopic equation is given by

Un+1 = Un +∆t F (Un, tn) = Un + a∗∆t
Uni+1 − 2Uni + Uni−1

∆x2
(30)

The time derivative operator F (Un, tn) in the comparison scheme (30) has
eigenvalues

λk = − 4a∗

∆x2
sin2(πk∆x), (31)

which, using the forward Euler scheme as time-stepper, results in the stability
condition

max
k
|1 + λk∆t| ≤ 1 or

∆t

∆x2
≤ 1

2
a∗

It can easily be checked that the operator F̄ 2(Un, tn; δt,H) is linear, so we
can interpret the evaluation of F̄ 2(Un, tn; δt,H) as a matrix-vector product.
We can therefore use any matrix-free linear algebra technique to compute
the eigenvalues of F̄ 2(Un, tn; δt,H), e.g. Arnoldi [14]. We choose to compute
F̄ 2(Un, tn; δt,H) and F (Un, tn) on the domain [0, 1] with Dirichlet bound-
ary conditions, on a mesh of width ∆x = 0.05 and with an inner box width
of h = 2 · 10−3. We choose δt = 5 · 10−6 and compute the eigenvalues of
F̄ 2(Un, tn; δt,H) as a function of H. The results are shown in figure 2. When
the buffer size is too small, the eigenvalues of the gap-tooth estimator are
closer to 0 than the corresponding eigenvalues of the finite difference scheme.
This is because the microscopic simulation approaches a steady state quickly
(due to the Dirichlet boundary conditions), instead of following the true sys-
tem evolution in a larger domain. With increasing buffer size H, the eigenval-
ues of F̄ 2(Un, tn; δt,H) approximate those of F (Un, tn), which is an indication
of consistency for larger H. Since all eigenvalues are negative and the most
negative eigenvalue for F̄ 2(Un, tn; δt,H) is always smaller in absolute value
than the corresponding eigenvalue of F (Un, tn), the patch dynamics scheme
is always stable if the comparison scheme is stable.
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Fig. 2: Spectrum of the estimator F̄ 2(Un, tn; δt,H) (dashed) for the model equation
(8) for H = 2 · 10−3, 4 · 10−3, . . . , 2 · 10−2 and δt = 5 · 10−6, and the eigenvalues (31)
of F (Un, tn) (solid).

4.3 Numerical illustration

We illustrate the theory with a diffusion homogenization problem. Consider
the model problem (8) with

a(x/ε) = 1.1 + sin(2πx/ε), ε = 1 · 10−5 (32)

as a microscopic problem on the domain [0, 1] with homogeneous Dirichlet
boundary conditions and initial condition u(x, 0) = 1 − 4(x − 1/2)2. The
corresponding macroscopic equation is given by equation (10), with a∗ =
0.45825686. This problem has also been used as a model example in [1, 33].
To solve this microscopic problem, we use a second order finite difference
discretization with mesh width δx = 1 · 10−7 and lsode [15] as time-stepper.
The concrete gap-tooth scheme for this example is again defined by taking
second order central finite differences.

We first perform a numerical experiment to show the convergence be-
haviour in terms of buffer width. Once a suitable buffer width has been de-
termined, we perform a long term simulation.

Buffer width. We first compare a gap-tooth step with h = 2 · 10−3 and
∆x = 1 · 10−1 with the reference estimator a∗D2(Ûn), in which the effective
diffusion coefficient is known to be a∗ = 0.45825686. Figure 3 shows the error
with respect to the finite difference time derivative as a function of H (left)
and δt (right). It is clear that the convergence is in agreement with Theorem
1. We see that smaller values of δt result in larger values for the optimal error,
but the convergence towards this optimal error is faster.
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Long term simulation. We now perform a long term simulation and
compare the results with a long term simulation using the comparison scheme.
The properties for the macroscopic scheme are chosen to be ∆x = 1 ·10−1 and
∆t = 1 · 10−3. As gap-tooth parameters, we choose H = 8 · 10−3, δt = 1 · 10−6

and h = 1 · 10−4. Thus, simulations are performed in only 8 % of the spatial
domain, and 0.1% of the time domain. The results are shown in figure 4. We
also compare the results of the patch dynamics scheme to a reference solution
of the effective equation, which is obtained using the comparison scheme on
a much finer grid (∆x = 5 · 10−3 and ∆t = 1 · 10−6). We see that the solution
is well approximated, and that the error of the patch dynamics scheme with
respect to the finite difference comparison scheme is an order of magnitude
smaller than the total error with respect to the reference solution.

5 Numerical results for advection problems

Consider equation (15) with

c(x/ε) = 1/(3 + sin(2πx/ε)), ε = 1 · 10−5. (33)

The effective equation is then given by (16) with c∗ = 1/3. The available
microscopic simulation code is an upwind/forward Euler time-stepper on a
grid with size δx = 5 · 10−10 and a time-step dt = 5 · 10−11. We take the size
of the small boxes to be h = 5 · 10−4.

We first investigate how the accuracy of the scheme is influenced by the
buffer size H and the gap-tooth time-step δt. Once a good set of method
parameters is found, we perform a long-term simulation. We construct patch



14 Giovanni Samaey, Dirk Roose, and Ioannis G. Kevrekidis

0

0.2

0.4

0.6

0.8

1

u
(x

,
t)

0 0.25 0.5 0.75 1

x

t=0
t=0.05
t=0.1
t=0.15

0

2.5 · 10−5

5 · 10−5

7.5 · 10−5

E
f

d

0 0.1 0.2 0.3 0.4 0.5

t

0

2 · 10−4

4 · 10−4

6 · 10−4

E
r
e
f

Fig. 4: Left: Snapshots of the solution of the homogenization diffusion equation using
the patch dynamics scheme at certain moments in time. Right: error with respect to
the “exact” solution of the effective equation (top) and a finite difference comparison
scheme (bottom). The total error is dominated by the error of the finite difference
scheme.

dynamics schemes to mimic the upwind, third-order upwind-biased and cen-
tral fourth-order spatial discretizations.

5.1 Consistency

To determine the buffer size H and the gap-tooth time-step δt, we perform
a numerical simulation for this model on the domain [−H/2,+H/2], with
H = h+5i ·10−9 for i = 1, . . . , 20 on the time interval [0, δt] with δt = j ·10−9,
j = 1, . . . , 100 and the linear initial condition

uε(x, 0) = D1x+D0 = 3.633x+ 0.9511.

The results are shown in figure 5(left). We notice two differences with respect
to the parabolic case. First, it is clear that we do not need very large buffer
regions. Indeed, the advective nature of equation (15) ensures that information
travels with finite speed. The consequence is that, as soon as the time-step is
too short for the boundary information to reach the interior of the domain,
the buffer size H will not have any influence on the accuracy of the result.

The second difference is that the error decreases monotonically with de-
creasing δt, whereas the theoretical result for diffusion indicates that we would
have an error term of the form O(ε/δt). This discrepancy is due to additional
numerical inaccuracies during the restriction step, which are caused by the
weak convergence towards the homogenized equation in the hyperbolic case.
Figure 5 shows how uε(x, t) varies as a function of time. We see that the mi-
croscopic solution develops oscillations which grow in amplitude with time.
Recall that the macroscopic quantity at time t = δt is computed as the spatial
average of the solution uε(x, δt) over a box of size h. We need to approximate
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this spatial average using a quadrature formula, in which we can only use
the solution on the numerical grid points as quadrature points. Thus, we
may expect a decrease of accuracy in the computation of the box average
for increasing values of δt. We numerically verified this intuitive reasoning by
increasing ε. The box solution then becomes less oscillatory, and we observed
that the accuracy of the restriction was increased.

Based on these results, we choose H = h + 1 · 10−7 and δt = 5 · 10−9.
Since our macroscopic schemes will use ∆x = O(10−2) and ∆t = O(10−2),
the method results in gains of the order of 100 in space and 106 in time.
However, we need to mention that, for realistic microscopic problems, part of
this spectacular gain will be lost because we need to initialize the microscopic
system consistently (the lifting step) using only a few low-order moments,
which may require additional microscopic simulations [11, 12, 23].

5.2 First order upwind scheme

We perform a numerical simulation for this model on the domain [0, 1] with
periodic boundary conditions. As an initial condition, we choose

u0(x) = (sin(πx))100, (34)

which is a typical initial condition to study spatial discretizations for the
advection equation [18]. We use a macroscopic mesh of size ∆x = 1 ·10−2 and
a time-step ∆t = 1 · 10−2, and we define our macroscopic comparison scheme
as an upwind/forward Euler scheme

Un+1
i = Uni −∆t c∗

Uni − Uni−1

∆x
. (35)
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The corresponding patch dynamics scheme is defined by the algorithm in
section 3, where the initial condition (23) is defined by taking d = 1 and

D1
i (Ū

n) =
Ūni − Ūni−1

∆x
, D0

i (Ū
n) = Ūni . (36)

The resulting time derivative estimator is used with a forward Euler time-
stepper. The results are shown in figure 6. The patch dynamics scheme clearly
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Fig. 6: Left: Snapshots of the solution of the homogenization advection equation (15)
with coefficient (33) using the upwind patch dynamics scheme at certain moments
in time. Right: L2-error with respect to the “exact” solution of the effective equation
(16) (top) and the finite difference comparison scheme (35) (bottom). The total error
is dominated by the error of the finite difference scheme.

has the same properties as the comparison finite difference scheme. It is very
diffusive, but maintains positivity. The left figure shows the L2-error of patch
dynamics with respect to the finite difference scheme, and with respect to
an “exact” solution of the effective equation, which was obtained using the
upwind scheme on a very fine mesh with ∆x = 1 · 10−4 and ∆t = 1 · 10−4. We
see that the error of the patch dynamics scheme is completely dominated by
the finite difference error.

5.3 Third-order upwind-biased scheme

Next, we design a patch dynamics algorithm to mimic the third-order upwind-
biased scheme as a spatial discretization, which we combine with the classical
fourth-order Runge–Kutta time integration method. In this case, the macro-
scopic time derivative is given by

F (Uni , tn) =
c∗

∆x

(
−1

6
Uni−2 + Uni−1 −

1
2
Uni −

1
3
Uni+1

)
. (37)



Patch dynamics for advection homogenization problems 17

The Runge–Kutta method requires some auxiliary evaluations of the time
derivative operator,

k1 = F (Uni , tn)

k2 = F (Uni +
∆t

2
k1, tn +

∆t

2
)

k3 = F (Uni +
∆t

2
k2, tn +

∆t

2
)

k4 = F (Uni +∆t k3, tn +∆t)

(38)

and the time-stepper Un+1 = S(Un, tn;∆t) is then defined as

Un+1 = Un +∆t

(
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4

)
(39)

The corresponding patch dynamics scheme is defined by the algorithm in
section 3, where the initial condition (23) is defined by taking d = 1 and

D1
i (Ū

n) =
1
∆x

(
1
6
Ūni−2 − Ūni−1 +

1
2
Ūni +

1
3
Ūni+1

)
,

D0
i (Ū

n) = Ūni .

(40)

The resulting time derivative estimator is subsequently used inside the fourth-
order Runge–Kutta method.

We perform a numerical simulation on a macroscopic mesh with size
∆x = 2 · 10−2 and ∆t = 2 · 10−2. The results are shown in figure 7. The patch
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Fig. 7: Left: Snapshots of the solution of the homogenization advection equation
(15) with coefficient (33) using the upwind-biased patch dynamics scheme at certain
moments in time. Right: L2-error with respect to the “exact” solution of the effective
equation (16) (top) and the finite difference comparison scheme (39)-(37) (bottom).
The total error is dominated by the error of the finite difference scheme.

dynamics scheme clearly has the same properties as the comparison finite
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difference scheme. It is less diffusive than the upwind scheme, but some arti-
ficial oscillations are introduced. The left figure shows the L2-error of patch
dynamics with respect to the finite difference scheme, and with respect to
an “exact” solution of the effective equation, which was obtained using the
upwind scheme on a very fine mesh with ∆x = 1 · 10−4 and ∆t = 1 · 10−4.
Again, we see that the error in approximating the exact solution is completely
dominated by the error of the macroscopic scheme, while the errors due to
estimation are negligible.

5.4 Fourth-order central scheme

Finally, we design a patch dynamics algorithm to mimic a fourth-order central
scheme as a spatial discretization, which we combine again with the classical
fourth-order Runge–Kutta time integration method. In this case, the macro-
scopic time derivative is given by

F (Uni , tn) =
c∗

∆x

(
− 1

12
Uni−2 +

2
3
Uni−1 −

2
3
Uni+1 +

1
12
Uni+2

)
, (41)

and the time-integration method is again given by (38)-(39). The correspond-
ing patch dynamics scheme is defined by the algorithm in section 3, where the
initial condition (23) is defined by taking d = 1 and

D1
i (Ū

n) =
1
∆x

(
1
12
Ūni−2 −

2
3
Ūni−1 +

2
3
Ūni+1 −

1
12
Ūni+2

)
,

D0
i (Ū

n) = Ūni .

(42)

The resulting time derivative estimator is subsequently used inside the fourth-
order Runge–Kutta method.

We perform a numerical simulation on a macroscopic mesh with size ∆x =
2 · 10−2 and ∆t = 2 · 10−2. The results are shown in figure 8. The patch
dynamics scheme clearly has the same properties as the comparison finite
difference scheme. It is much less diffusive than the upwind scheme, but many
artificial oscillations are introduced, which is typical behaviour for central
schemes. The left figure shows the L2-error of patch dynamics with respect
to the finite difference scheme, and with respect to an “exact” solution of the
effective equation, which was obtained using the upwind scheme on a very fine
mesh with ∆x = 1 · 10−4 and ∆t = 1 · 10−4. Again, we see that the error in
approximating the exact solution is completely dominated by the error of the
macroscopic scheme, while the errors due to estimation are negligible.

5.5 Advection coefficients with macro-scale variations

As a second example, we consider equation (15) with

c(x/ε) = 1/(3 + sin(2πx/ε) + sin(2πx)), ε = 1 · 10−5. (43)
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Fig. 8: Left: Snapshots of the solution of the homogenization advection equation
(15) with coefficient (33) using the central fourth-order patch dynamics scheme at
certain moments in time. Right: L2-error with respect to the “exact” solution of the
effective equation (16) (top) and the finite difference comparison scheme (39)-(41)
(bottom). The total error is dominated by the error of the finite difference scheme.

The effective equation is then given by (16) with c∗ = 1/(3 + sin(2πx)).
The available microscopic simulation code is an upwind/forward Euler time-
stepper on a grid with size δx = 5 · 10−10 and a time-step dt = 5 · 10−11. We
take the size of the small boxes to be h = 5 · 10−4.

We choose H = h + 2 · 10−7 and δt = 5 · 10−9 as method parameters,
and we perform a patch dynamics simulation using a macroscopic mesh size
∆x = 2 ·10−2 and ∆t = 5 ·10−3 using the upwind initialization (36), combined
with forward Euler in time.

The simulations show that the patch dynamics scheme is a good ap-
proximation to a finite difference approximation of equation (16) in non-
conservative form. In particular, the correct comparison scheme would be

Un+1
i = Uni −∆t

(
c∗(xi)

Uni − Uni−1

∆x
+ Uni ∂xc

∗(xi)
)
, (44)

which is not entirely the same as the classical finite volume upwind scheme

Un+1
i = Uni −

∆t

∆x

(
c∗(xi+1/2)Uni − c∗(xi−1/2)Uni−1

)
. (45)

In particular, the scheme (44) is not conservative.
The results are shown in figure 9. Again, we note that the first-order

upwind scheme is very diffusive, and that the error of the patch dynamics
scheme with respect to the finite difference approximation (44) is 3 orders of
magnitude smaller than the error with respect to the exact solution. Moreover,
the error with respect to the finite difference scheme is an order of magnitude
smaller than the error with respect to the finite volume scheme (45), which is
consistent with the statements made above.
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Fig. 9: Left: Snapshots of the solution of the homogenization advection equation
(15) with coefficient (43) using the first-order upwind patch dynamics scheme at
certain moments in time. Right: error with respect to the “exact” solution of the
effective equation (16) (top), the finite difference comparison scheme (44) (middle)
and the finite volume scheme (45) (bottom). The total error is dominated by the
error of the finite difference scheme, and the error with respect to the finite volume
scheme is significantly larger that the error with respect to (44).

6 Conclusions

In this paper, we reviewed the patch dynamics scheme and showed its ba-
sic convergence properties on model hyperbolic and parabolic homogeniza-
tion problems. We illustrated that the scheme is capable of reproducing the
correct macroscopic behaviour, even when the macroscopic equation is not
of diffusion-type, and demonstrated that the required buffer size depends
severely on the properties of the effective equation. Specifically, in the case of
a macroscopic transport equation, the buffers can be very small compared to
the diffusion case.

We wish to stress the fact that patch dynamics is an approximation to a
finite difference scheme of the macroscopic equation in non-conservative form,
which is most apparent in the case of coefficients that vary on a macroscopic
scale. However, we note that there is no guarantee that the patch dynamics
scheme will be conservative, even if the corresponding finite difference scheme
is, since the extra errors that are induced might (and will) destroy conservation
in the numerical solutions. When numerical conservation is important (e.g. if
the macroscopic solution would develop sharp fronts), we will therefore need
to resort to a finite volume formulation of the patch dynamics scheme. This
variant is currently under active investigation.
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